Hydrolysis of the damaged deoxythymidine glycol nucleoside and comparison to canonical DNA.

نویسندگان

  • Lex Navarro-Whyte
  • Jennifer L Kellie
  • Stefan A P Lenz
  • Stacey D Wetmore
چکیده

Genomic integrity is continually under attack by both endogenous and exogenous sources. One of the most common forms of damage is oxidation of the thymine nucleobase to form (5R,6S)-dihydroxy-5,6-dihydro-thymine (thymine glycol or Tg), which stops DNA polymerases and is thus cytotoxic. Thymine glycol damage is repaired through a variety of mechanisms, including the multi-step base excision repair (BER) pathway. In the first BER step, the glycosidic bond of the dTg nucleotide is hydrolyzed by a DNA glycosylase. In order to understand the catalytic effect of the glycosylases, the corresponding uncatalyzed mechanisms and barriers are required, as well as an appreciation of the relative reactivity of the glycosidic bond with respect to the corresponding canonical nucleoside. To this end, the PCM-B3LYP/6-31+G(d) reaction potential energy surfaces (PES) for deoxythymidine (dT) and dTg hydrolysis are characterized in the present study using solvent-phase optimizations and a model containing three explicit water molecules. The surfaces are comparable to those generated using functionals that account for dispersion interactions (B3LYP-D3 and M06-2X). Mapping the PES as a function of the glycosidic bond length and nucleophile-sugar distance reveals a synchronous S(N)2 mechanism as the lowest energy pathway for damaged dTg hydrolysis, which contrasts the preferred dissociative S(N)1 mechanism isolated for the deglycosylation of natural dT. As proposed for other enzymes, the difference in excision pathway may at least in part help the enzyme selectively target the damaged base and discriminate against the natural counterpart. Interestingly, the barrier to dTg deglycosylation (ΔG(‡) = 138.0 kJ mol(-1)) is much higher than for dT deglycosylation (ΔG(‡) = 112.7 kJ mol(-1)), which supports the stability of this lesion and clarifies the catalytic feat presented to DNA repair enzymes that remove this detrimental damage from the genome. Although nucleotide excision repair (NER) typically targets bulky DNA lesions, the large calculated barrier for dTg deglycosylation rationalizes why the NER mechanism also excises this non-bulky lesion from cellular DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyethylene Glycol Repairs Damaged Membrane; Biophysical Application of Artificial Planar Bilayer to Mimic Biological Membrane

Polyethylene glycol (PEG) is a hydrophilic polymer, known to be capable to fuse numerous single cells in vitro, to join the membranes of adjacent neurons and giant invertebrate axons, and to seal damaged neural membranes. The molecular mechanism of the action of PEG is still unknown. It is believed that PEG dehydrates membranes and enables their structural components to resolve and rearrange in...

متن کامل

Involvement of a cryptic ATPase activity of UvrB and its proteolysis product, UvrB* in DNA repair.

The incision of damaged DNA by the Escherichia coli UvrABC endonuclease requires ATP hydrolysis. Although the deduced sequence of the UvrB protein suggests a putative ATP binding site, no nucleoside triphosphatase activity is demonstrable with the purified UvrB protein. The UvrB protein is specifically proteolyzed in E. coli cell extracts to yield a 70 kD fragment, referred to as UvrB*, which h...

متن کامل

Template-directed addition of nucleosides to DNA by the BfiI restriction enzyme

Restriction endonucleases catalyse DNA cleavage at specific sites. The BfiI endonuclease cuts DNA to give staggered ends with 1-nt 3'-extensions. We show here that BfiI can also fill in the staggered ends: while cleaving DNA, it can add a 2'-deoxynucleoside to the reaction product to yield directly a blunt-ended DNA. We propose that nucleoside incorporation proceeds through a two-step reaction,...

متن کامل

Phenyl 1,2,3-Triazole-Thymidine Ligands Stabilize G-Quadruplex DNA, Inhibit DNA Synthesis and Potentially Reduce Tumor Cell Proliferation over 3′-Azido Deoxythymidine

Triazoles are known for their non-toxicity, higher stability and therapeutic activity. Few nucleoside (L1, L2 and L3) and non-nucleoside 1,2,3-triazoles (L4-L14) were synthesised using click chemistry and they were screened for tumor cell cytotoxicity and proliferation. Among these triazole ligands studied, nucleoside ligands exhibited higher potential than non-nucleoside ligands. The nucleosid...

متن کامل

Alkaline lability of fluorescent photoproducts produced in ultraviolet light-irradiated DNA.

Ultraviolet light induces alkaline labile lesions in DNA. These lesions occur at the bipyrimidine sites T-C, C-C, and T-T, and do not result from the formation of pyrimidine cyclobutane dimers. To examine the chemical nature of the alkaline labile lesions, pyrimidine dinucleotides (2'-deoxythymidylyl-(3' leads to 5')-2'-deoxycytidine, 2'-deoxythymidylyl-(3' leads to 5')-2'-deoxythymidine, 2'-de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 44  شماره 

صفحات  -

تاریخ انتشار 2013